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An Eulerian difference method is developed for the transient potential flow ol an incom- 
pressible fluid with fully nonlinear free surface conditions. The free surface coordinate !: = 
~(x. t) and the velocity potential $(I, y = q; I) on the free surface are recognized as the primary 
unknowns to be solved as an initial value problem from the pair of nonlinear partial differen- 
tial equations representing the dynamic and the kinematic conditions of the free surface. The 
continuity relation V’d = 0 for the velocity potential &.u, ?;; r) over the flow field Q below the 
free surface is recognized as a subsidiary condition to be enforced at all times. The field of 
computation is transformed into a time invariant Cartesian region with the free surface ~(x. t) 
represented by a coordinate line (or surface). The iterative solution for &.x, 4‘; I), p(x; .v; r) in 
this fixed field of computation is facilitated by the use of Fast Fourier Transform (FFT). Tbe 
iterative process converges rapidly. In terms of this converged 4(x. x; t),the free surface 
location ~(x, t) and its potential 4(x, y = 11; t) are advanced in time. Results from two planar 
examples are illustrated. The method is equally applicable to problems in three space dimen- 
sions, possibly involving interactive matching with neighboring flow fields. If the initial free 
surface potential 4(x, y =q; 1 =O) is unknown, difficulties may be encountered in data 
specification for securing a well posed problem for solution. ‘a 1986 Academic Press. Inc. 

INTRODUCTION 

Free surface wave problems are characterized by the presence of some unknown. 
time dependent free surface of a fluid. Various methods have been developed to 
solve such problems. The potential flow problems of an incompressible fluid in two 
space dimensions have been dealt with quite succesfully with the harmonic Row 
field underneath the free surface represented by some unknown analytic complex 
function, i.e., the complex potential 15 + i$, where 4 is the velocity potential and $ 
the stream function. Such a complex representation greatly facilitates the evaluation 
of the Green’s function that permits the expression of the solution of the harmonic 
field through boundary perturbations and their associated Green’s functions. Then 
the dynamic relation, defining the evolution of the free surface stands as an integro- 
differential equation that may be solved iteratively. When linearized, the solution 
can also be effected through normal mode analysis. The temporal evolution of the 
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free surface have thus been solved numerically for selected configurations [l-4 ]. 
Despite some numerical difficulties, such solutions enable us to learn much about 
the free surface waves, with Lagrangian Marker Particles providing vivid &splays 

of the evolution. 
The methods described above are, however, not useful for problems in three 

space dimensions without a convenient extension of the complex representation of 
the harmonic fields to facilitate the evaluation of the Green’s functions. The non- 
trivial boundaries of problems of practical interest introduce additional difficulties. 
There have therefore been considerable efforts in developing computational 
methods for the solution of the free surface problems directly from the Euler or the 
Navier-Stokes system of equations with nonperiodic and/or otherwise nontrivial 
boundaries. Hopefully, such computational methods will be equally applicable to 
free surface problems in three as well as two space dimensions. Many such com- 
putational methods have been developed in which the flow conditions on the free 
surface are linearlized and the free surface location interpolated. The computational 
process is complicated with result yet to be desired. 

The MAC methods [S-S] and their modified versions [S-IO] are popular. They 
employ some finite difference method to advance the flow fields at a given time over 
a fixed Eulerian set of cells (or grids). The free surface is outlined by those cells with 
scarcely few (or none) Marker Particle(s). Marker Particle(s) is assigned in each 
cell to indicate the presence of fluid in the cell, and its location is advanced by the 
local fluid velocity at successive time steps. This Lagrangian up-dating of Marker 
Particles near the free surface determines, according to some preconceived format, 
the new free surface at the advanced times. Such a mixed Eulerian-Lagrangian 
computation is tedious but intuitively appealing. Their global results are often 
impressive despite compromising details. 

Finite element methods have also been developed [f l-161 for such problems. In 
view of the changing free surface at successive time steps, the grids must be rezoned 
repeatedly; and the discrete formulation in terms of the set of finite elements over 
the new grids and of the changing free surface boundary conditions must be altered 
at every time step. These finite element methods are as tedious as the MAC 
methods. Globally acceptable results can also be obtained if computational 
instability can be avoided or suppressed. 

The moving free surface as a boundary of the computational region is widely 
recognized as a major source of difticulty(ies). A moving boundary can, however, 
be simply removed by using the unknown free surface as a coordinate (at least for 
the nonbreaking free surface) in the transformed computational space. The physical 
location of the free surface can be recovered through inverse transformation after 
the solution has been obtained in the transformed space. Thus for a potential flow 

problem, the finite difference (or element) solution of the Laplace equation for the 
velocity potential can be carried out in the transformed space with proper boun- 
dary formulation. The solution in the physical space is then obtained through 
inverse mapping [ 177193. With appropriately linearized boundary formulation 
such solution at fairly coarse meshes yields reasonably looking results, although 
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computational instability often appears at more relined meshes. When the fully 
nonlinear boundary formulation on the free surface is adopted, instability becomes 
more severe so that some “filtering” scheme (or other forms of computational 
artifices) has to be introduced to restore results comparable to those with linearized 
boundary formulations. It is apparent that computational difhculty does not lie 
entirely in the unknown, moving free surface boundary. 

Physically, the dynamic and the kinematic statements for the motion of fluids on 
and near the free surface define the temporal development of the local fluid flow q, 
and qI (i.e., the time derivatives of fluid velocity and the free surface location respec- 
tively). They are wave equations, defining the course of temporal development of 
surface waves; not field equations defining the spatial variation of velocity potential 
at any time t as boundary condition for the determination of the flow field Q, below 
the free surface. To use the dynamic relation as such boundary conditions, one has 
to approximate Lj, and/or qt. When the flow field at the advanced time step is deter- 
mined, the condition of zone of dependence of the surface wave development may 
have been violated with consequent computational instability. 

The MAC methods treat the entire field as a wave problem with the fluid velocity 
? advanced in time as an initial value problem via pressure and/or vorticity, sup- 
posedly determined by the subsidiary relation of continuity that the velocity field 
must remain solenoidal at all times. This is easier said than done, and often has to 
be compromised along with some approximate treatment of the free surface 
location and the free surface conditions. With appropriate details, it is possible to 
generate globally reasonable results. We are, however, disturbed not only by the 
various comprising details, but also by the failure of the calculated velocity fiel 
become reasonably solenoidal. Moreover, such treatments of initial value problems 
with the infinite signal speeds inevitably violates the condition of zone of depen- 
dence at any finite time step. Computational difficulty is thus to be expected. 
Physically the free surface wave under gravity is essentially “frozen” while the 
pressure disturbances within the incompressible fluid are relaxed “instantaneously” 
by the “infinitely” fast pressure waves to restore the solenoidal velocity field 
V 9 4 = 0. For each computational time step, selected to correspond to the charac- 
teristic time of the surface waves, the velocity 4 in L2 should be determined at any 
instant t from the solenoidal condition with fixed boundary, not up-dated as in the 
MAC methods through momentum equations. The velocity field g should be 
solenoidal and the pressure field should be smooth at all times without filtering and 
smoothing. 

The disparity of the speeds of propagation of the pressure waves in the fluid 
interior and the gravitational wave on the fluid surface suggests the following com- 
putational approach: The dynamic and the kinematic relations for the fluid on the 
free surface are treated as wave equations for the temporal development of free sur- 
face locations and of fluid velocity on it. The velocity g in 52, below the free surface 
is determined at every instant by fixed boundary value problems on 52. Since sur- 
face dynamics is coupled to the solution of 4 in the field Q, some iterative method 
of solution is generally required. The iterative sequence of the velocity field 4 musr 
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be solenoidal so that the iterative solution of the surface wave equation is carried 
out in the solenoidal subspace. To demonstrate the physical concept, we give in the 
next section the mathematical formulation of the potential flow problem in two 
space dimensions. Its generalization to three space and more complex cases is 
straightforward. 

FORMULATION 

Consider here the transient potential flow of an incompressible fluid with velocity 

q = Vh in terms of the velocity potential function 4(x, y; t) in two space dimensions, 
initiated by some pressure disturbance on the free surface. The free surface at any 
instant t is defined by ,V = ~(x, t), with the gravitational acceleration g acting in the 
negative y direction and ~(x, t) some single valued function of x at any t. (Thus the 
present consideration is limited to free surface that does not break in its course of 
development.) Here (x, y) designates a rectangular Cartesian coordinate system 
with origin fixed at some convenient point at all times. The atmospheric pressure 
acting on the free surface is po. We hope to determine the potential function 
4(x, y; t) and the pressure p(x, y; t) in the region Sz below the free surface ~(x, t) at 
all times t > 0. For simplicity, we take the region 4 to be a two dimensional tank 
bounded by rigid, impermeable solid walls at x = &L/2 and a flat bottom y = -d. 
y = 0 represents the free surface when the fluid is in static equilibrium. Let the fluid 
density be p and the representative velocity of the ensuing fluid motion be U. Define 
the Froude Number I;, = U/(gL)‘j2 and the free surface pressure parameter 6= 
pO/pgL. Then the momentum equation for such a potential flow field becomes 

i 

cl2 aP Y 
v q4+1+jyE 

I 
=o. 

The quantity in the square bracket is a function of time only, i.e., the Bernoulli’s 
integral for such potential flows. If the dimensionless pressure on the free surface 
y = ~(x, t) is taken to be zero, we have the dynamic relation along ~(x, t) as 

where q(x, t) defines the instantaneous free surface, satisfying the kinematic con- 
dition 

%=d.dQLC. (3) 

Here #, and #, are the partial derivatives of 4(x, y; t) with (y, t) and (x, t) held 
constant, respectively, and evaluated at x, y = ~(x, t), i.e., on the free surface. This 
4(x, y; t) is the harmonic velocity potential, to be determined from the continuity 
relation 

v~q=v~.y,,.,~=o (4) 
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under properly posed boundary data over the region 52(x, y; t). Thus Eqs. (2) and 
(3) stands as the pair of wave equations governing the temporal development of the 
free surface q(x, t) and the velocity potential 4[x, ~(x, t); t] on the free surface. 
Equation (4) is a subsidiary condition that defines the harmonic function 4 and its 
spatial derivatives dX and 4, that are needed in Eqs. (2) and (3). As a velocity 
potential in Q, 4(x, y; t) will provide the fluid velocity in Q as 

4(X> Y; t) =vt4x, Y; t). (5) 

Differentially speaking, 4 as defined by (5) is solenoidal as 4 satisfies (4). This is not 
necessarily true if 4 and q are known or defined only as netfunctions in discrete 
form. It is important to be assured of the solenoidal property of the velocity field if 
the pressure field p(x, y; t) is to be evaluated accurately as an integral of Eq. (1) 
with p,, = 0: 

Given a set of initial data g(x, t = 0) and $[x, ~(x, 0); t = 01, we have to solve 
first Eq. (4) to obtain C&X, y; t = 0) over sZ(x, y; t = 0) and then evaluate C$.~ and 4, 
on y = y(x; t = 0) to permit the evaluation of 4, and v, from Eqs. (2) and (3 ). In 
some discretized form, ~;l(x, d t) and #[x. y(x., d t); At] at the advanced time step At 
can then be solved, provided that the condition of zone of dependence (or the CFI. 
condition in linearized form) of the free surface wave is obeyed. Details of 
implementing the discrete solution are illustrated in the next section. 

We note that, at any time step, the solution of 4(x, y; t) from Eq. (4) under the 
“fixed’” free surface location ~(x, t) is “linear” and effectively “uncoupled” from the 
nonlinear problem of advancing the free surface wave. Various useful superposition 
techniques can be employed to reduce the solution of the Poisson equation to stan- 
dard component forms, which are given in the next section. The asymptotic concept 
of uncoupling the incompressible flow field below the free surface from the free sur- 
face dynamics itself is generally valid, not only for more complicated initial value 
problems of the Poisson equation, but also for rotational and/or stratified Row 
fields in three as well as two space where the Poisson equation will be replaced. The 
illustrative examples given below are simple to avoid possible confusion of the fun- 
damental issue with the computational details of more complicated examples. 

COMPUTATIONAL SOLUTION 

Introduce the coordinate transformation 

[-v+d 
q+d 

so as to map the time varying region Q(x, y; t) into a time invariant rectangular 
region of computation - l/2 < x < l/2; 0 < 5 < 1, (Figs. la, b). In terms of the trans- 
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.b 

FIG. 1. (a) Flow field below free surface q(-‘c, t) to be computed at a given time t. (b) Transformed 
computational demain with fixed boundary at free surface t = 1. 

formed variable (x, l), the Laplace equation (4) becomes (8a). The wave equation 
(2) and (3) become (Sb) and (8~). The boundary data for C&X, y; t) become (Sd) 
and (Se) 

The initial data for 4 and q on 5 = 1, at t = 0 are: 

q&c, 5 = 1; t = 0) = g(x) 

vk t = 01 = yIo(x) 

ont=l @b) 

on[=l @cl 

onx=O, 1 (8d) 

on c=O. (gel 

(W 

PW 
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With y(x) = ilo specified, Eq. (8a) is first solved with the boundary data (&d), 
(se) and (8f) in (x. <) space. We introduce an iterative process to solve Eq. (8a) as a 
Poisson equation for the advanced iterate btk+ ‘) with its source terms on the 
right-hand side of (8a) evaluated with the known previous iterate d@). The iterative 
process is considered to be converged when /id’” + ‘) - (SCk’]l z < E = 10 -‘. The dif- 
ferential operators are discretized with simple centered spatial differences to give the 
system of difference equations: 

~(i-l,j)+~(i+l,j)-t~1~~(i,j-I)+t*~(i,j+l) 

-2(1 +a’)~(i,j)=Ax’.R(i,j) (9) 

where CI = Ax/As and ~,4(i, j) represents the (k + l)th iterate of 4 evaluated at idx 
and jA{ over all the grid points interior of Sz; i.e., 0 d i < M, 0 <j< Ri with 
MAX = 1 and TVA< = 1. R(i, j) represents the right-hand side of Eq. (8a) evaluated 
with the known kth iterate of 4. 

For the Neumann boundary condition on a boundary point i = 0 or M, such as 
(Sd), the normal derivative can be expressed in terms of the current values of Q on 
the grid points in the immediate neighborhood, while the nonzero value of the nor- 
mal derivative is evaluated in terms of the previous iterate to be combined with AX 
R( i, j). Then Eq. (9) becomes 

~(i-l,j)+~(i+1,j)+a”ql(i,j-1)+cr2~(i,j$-1) 

- 2( 1 + a’) &i, j) = B(i, j) (10) 

with 0 < i < M, 0 <j < N. Thus equations system (10) stands as a matrix equation 
of order (M) x (N) with tridiagonal bands for the solution of all d(i, j) interior of Q 
as if all the normal derivatives on the Neumann boundaries are zero. Introduce the 
appropriate Fourier transform along the x-direction which, for the present 
application, is 

Synthesis 

qb(i, j) = f E(s, M) (b,(j) cos $ 
( 1 

(O<i<M) 
S=O 

Analysis 

with E(s, M) = l/2 if s = 0 or M and = 1 otherwise. A similar decomposition of 
B(i: j) into B,(j) and substitution into Eq. (10) give: 

+ aZ4.Aj + 1) = B,(j) with O<s<M. 
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Equations system (12) for each Fourier component, d,, is tridigonal. Thus when the 
free surface data 4(x, 5 = 1; t =0) = g( ) x is resolved into its Fourier components 
g,(N) as is in Eq. (11 b) and when the Neumann condition on the bottom wall j = 0 
is incorporated, all d,(j) with 0 <j< N can be explicitly solved from (12). This 
operation is repeated for all 0 <s < M to obtain all d,(j) in the interior of Q. 
Synthesis of d,(j) over s according to equation (lla) yields the desired solution 
&i, j) or 4(x, i-i t) for the specific boundary data. 

We are now ready to advance ~(x, t) and 4(x, 5 = 1; t) to the next step 
t + At.With the discretized forms of Eqs. (8b) and (8c), 

~“+‘(i)=qV(i)+ [r;l+‘(i)+F(i)] At/2 

qY+ ‘(i) = q”(i) + [G”+‘(i) + G”(i)] At/2 
(13) 

where F(i) and G(i) are the discretized forms (say centered spatial difference) of the 
right-hand sides of Eqs. (8b) and (8~). Both F and G involve 4, and tir on < = 1 to 
be evaluated from 4(x, <) synthesized from d,(j) that are obtained from Eq. (12). 

The implicit form of Eq. (13) calls for its simultaneous or iterative solution of 
~(x, < = l), 4(x, < = 1) at t + At, (i.e., the n + 1 time step). When satisfactory con- 
vergence is obtained, we proceed to the next time step, i.e., to solve the boundary 
value problem of Poisson equation (8a) for the potential 4(x, 5, I + At). 

The pressure field p(x, <; t) or p(x, y; t) within the domain D can be calculated 
directly from Eq. (6), when desired, from the converged 4(x, 4; t). It does not par- 
ticipate in the solution procedure of ye and 4. 

SAMPLE RESULTS 

Two sample computations have been carried out with Cyber 170-172 on a 
18 x 18(x, 5) rectangular mesh. The fast Fourier transform (FFT) was implemented 
with complex subroutine. The parameters of the free surface flow were chosen as, 

d/L = 1.7, q = l/2, G- = 0.1. 

The time step for integrating the wave equations is At = 0.02 L/U. Iterative con- 
vergence is considered as obtained when the relative maximum change of functions 
in successive iterations is < 10e5. 

The first example illustrates the relaxation of a distorted free surface 
qo(x, t = 0) = 0.2 cos(rcx) for positive times t > 0. The fluid was assumed to be main- 
tained at rest for t < 0 by some arbitrary free surface pressure distribution which is 
removed or restored to the atmospheric pressure p0 at t =0 so that 
4(x, y = y; t = 0) = 0. We wish to calculate the development of the free surface from 
the disturbed initial state of a v,,(x, t = 0) and &(x, t = 0) = 0. Firstly, the velocity 
potential d(x, y; t = 0) immediately after the restoration to the atmospheric 
pressure on the free surface r;lO(x, t) is calculated. Then, the free surface coordinate 
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y(x, At) and the free surface potential 4(x, 4 = 1; At) at the next time step At are 
calculated. This process is repeated to obtain y(x, t) and 4(x, y; 1) at successive time 
steps as is described in the previous section. The pressure field p(x, y; 1) at any time 
step can be obtained directly from Eq. (6) when desired. l[t takes generally five 
iterations to obtain satisfactory convergence of Q and q for each time step. The free 
surface locations ~(x, t) at several time steps are illustrated in Fig. 2. 

The second example illustrates the motion created by some suitable distribution 
of impulsive pressure acting on the free surface in static equilibrium y,(x) = 0, so as 
to produce an instantaneous free surface potential 

&(i, <= 1, t=O)=&,(i- 1, <= 1: t=O)-O.O42sin(rcx) 

with &,(O, 5 = 1; t = 0) = 0, and x = idx. The harmonic field 4(x, y; t = 0) obtained 
as the solution of Eq. (10) gives the initial velocity $, and &, of the fluid 
throughout Q resulting from the initial impulses. The calculation proceeds in the 
same manner as is in the previous example and described in the previous section. 
For this type of problem it requires ten iterations for the solution of Eqs. (IO) and 
(13) to obtain the converged results of q(x) and $(x, <) for each time step. The 
results are illustated in Fig. 3. 

The two examples given above represent the computation of a single Fourier 
component of any general Fourier decomposable initial data of ~(x, t = 0) and 
4(x, Y = 9; 1= 0). The computational solution of problems with such a general 
initial-boundary data involves simply the synthesis of the results of various com- 
ponents illustrated above at each time step prior to the iterative solution of the 
nonlinear wave problem. Besides additional computational effort, we do not 
anticipate any fundamental difficulty. 

The computational formulation is efficient. For each time step, there are two 
iterative loops. LOOP (a) is needed for the correction of the source terms in the 
solution of the potential function 4 from Poisson equation g(a). Loop (b) is needed 
for the quasi-linear up-dating of the nonlinear surface wave according to the 

Fro. 2. Evolution of a distorted Surface Wave Height at successive times (example I) with numbers 
on each curve indicating the number of time steps At. 
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X 
SWL 

FIG. 3. Evolution of equilibrium free surface (SWL) with initial impulsive free surface velocity at 
successive times (examples 2) with numbers on each curve indicating the number of time steps At 

implicit system of equations (13). Loop (a) is embedded in Loop (b). The 
operational counts of Loop (a), ignoring I/O and other data management time is 
- M(5 + log M) per Fourier component, where A4 is the number of mesh spacings 
in the x-direction (and also 5). Loop (a) requires Ka cycles to satisfy the relative 
convergence criterion. We have to repeat Loop (a) for each of the S Fourier com- 
ponents with 1 <s d S < M, where the number S of the Fourier components used 
should not exceed the number of mesh spaces used in the computation, The 
operational counts of quasi-linear up-dating of d and q from Eq. (13) is 
insignificant compared with SM(5 + log M). Thus if Loop (b) requires Kb cycles for 
“convergence,” the overall operational counts per time step is -M(5 + log n/i). S. 
Ka. Kb. Both Ka and Kb depend on the convergence criterion; and our choke of 
< lo-’ may be too restrictive in practical application. They also depend on the grid 
spacing (-M-l) and the time step size satisfying the local CFL condition. As 
expected, our calculations suggest that reducing grid sizes promotes “convergence,” 
i.e., smaller values of K, in particular Kb. There is clearly an optimum choice of M 
to minimize the overall computational effort for a given “accuracy” although we did 
not search for such an optimum. With M> 20, and dt = 0.02 as is in the present 
examples, Ka is small (l-2) and Kb- 5 for example 1, and - 10 for example 2. The 
overall computational effort clearly varies appreciably for different types of initial- 
boundary data. For the types of initial-boundary data specified herein, the 
proposed discrete method of solution of such free surface wave problems is very 
efficient, not only in operational counts per iteration, but in overall computational 
effort to fulfill some preassigned criterion of iterative convergence. 

DISCUSSION 

We have developed an Eulerian method for the computational solution of the 
temporal evolution of potential free surface flows in two space dimensions. The 
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method is stable and efficient without any need of smoothing and filtering. The free 
surface condition is implemented in its full nonlinear form. 

The method is equally applicable to more general situations, with arbitrary sur- 
face disturbances that are Fourier decomposable. The bottom surface need not be 
flat if the equilibrium depth of the fluid d is given as some known function of X. The 
solid walls may be replaced by imaginary surfaces with inflow or outflow velocity 
specified in terms of 4,. The computational formulation remains the same except 
possibly for some changes in the algebraic details. 

The extension of the present formulation from two to three space dimensions is 
straightforward. The wave equations (2) and (3) for the free surface will then be 
solved for y = (x, z; t ) in two space dimensions. So long as the Poisson problem 
(Eq. (13)) is posed properly for the solution of the velocity potential function 
C/(X, ij, z; t), the computational solution for the free surface problem in 3 and 2D 
will remain essentially the same. The actual solution of such 3D problems will need, 
of course, significantly larger and faster computer, and adequate fast Poisson solver 
in 3 space to secure reasonable iterative convergence of the computation. We note 
that the straight forward extension of many 2D Fast Poisson Solver to 3D is prone 
to spurious oscillations (or even computational instability). If the present method is 
simply extended by using FFT in both x and z directions, we observed some mild 
spurious oscillations, removable by simple algebraic smoothing every 5 to 10 
iterations. The computation is still quite efficient although the result is less certain 
vis a vis the 2D problems. Development of adequate fast Poisson solver in 3 can. 
be quite profitable and may be necessary. 

In the analysis of free surface problems of practical interest, the disturbed initial 
location q,(x) of the free surface is expected to be given but the associated free sur- 
face potential 4(x, y = q; t = 0) = g(x) is unlikely known. Other data will have to be 
supplied instead. Whether such alternative specification of the initial-bou~dar~l data 

will render a well posed problem for solution as described in previous section, is 
uncertain. 

When the initial speed of receding (or rising) of the free surface q,(x, t = 5) is 
given along with qO(x), we may solve the Poisson Equation (Sa) to obtain 
4(x, y = q; t = 5) in the following manner. Firstly, we transform the initial data ~1~ 
into some boundary data along 5 = 1 (i.e., y = y) to complement the boundary con- 
ditions (8d) and (Xe) specified on the remaining portion of aQ. With qt and vi, = 
d/l;lx ylO(x) given initially, Eq. (3) specifies a linear relation between 4, and 4,. When 
transformed into (x, 5) coordinate it becomes a linear relation between the spatial 
derivatives 4, along q,(s) and 4,. along the inward normal v of the free surface, i.e., 
$V = ~4, + fi on < = 1. We can also solve iteratively Eq. (8a) as a succession of 
Neumann problems by first guessing and then iteratively correcting the (p, from th,e 
previous iterants. The converged results gives 4(.x, t, i = 5) with 4, at I;’ = 1 suf- 
ficiently close to that used in evaluating the 4,. of the previous iterant. This con-. 
verged (b(.x, 5; t = 0) provides the needed initial data, 4(x, < = 1; i = 0) and the 4:. 
and 4Y on 5 = 1 (or y = qO(x)), for the determination of free surface wave develop- 
ment at later times as has been described previously. 
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When neither 4 nor qr on the free surface y = q are available as the initial data, it 
is difficult to find suitable alternative on the free surface to provide boundary data 
along the entire closed boundary X2, needed for the solution of 4(.x, y; t) in 52 from 
V’q5 = 0. We are skeptical if some pressure data away from the free surface might be 
used instead. This is because the specification of pressure in addition to the local 
Neumann condition (Sd) or (8e) creates a situation analogous to the Cauchy data 
which renders the Poisson problem ill-posed. Further investigation is needed to 
clarify such alternative formulation(s) to facilitate the solution of many free surface 
problems encountered in practice. 
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